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Abstract. We have generalized recent results on the integer quantum Hall effect, constructing 
explicitly a WI+- for the factional quantum Hall effect such that the negative modes annihilate 
the Laughlin wavefunctions. This generalization has a nice interpretation in lain’s composite- 
fermion theory. Furthermore, for these models, we have calculated the wavefunctions of the 
edge excitations, viewing them as area-preserving deformations of an incompressible quantum 
droplet and have shown that the W,+, is the underlying symmetry of the edge excitations 
in the fractional quantum Hall effect. Finally, we have applied this method to more general 
wavefunctions. 

1. Introduction 

The experimental discoveries of the integer quantum Hall effect (IQHE) [I] and of the 
fractional quantum Hall effect (FQHE) [2] are some of the most interesting physical 
phenomena in solid-state physics in recent years. The conductance of a two-dimensional 
electron gas in  a high-magnetic field at low temperature exhibits quantized plateau values 
of the form oZy = (e2/h)v where the filling factor v is an integer or fractional number. 
In many respects, both the integer and the fractional effect share very similar underlying 
physical characteristics and concepts, for instance the two-dimensionality of the system, 
the quantization of the Hall conductance with simultaneous vanishing of the longitudinal 
resistance and the interplay between disorder and the magnetic field giving rise to the 
existence of extended states. In other respects, they encompass entirely different physical 
principles and ideas. In particular, while the I Q E  is thought of essentially as a non- 
interacting electron phenomenon [3], the FQHE is believed to arise from a condensation 
of the two-dimensional electrons into a new incompressible state of matter as a result of 
interelectron interaction [41, see also [5,6]. 

An important step was taken by Laughlin [4] who wrote down the wavefunctions for the 
fundamental fractions U = 5 ,  4, $, :. ; which played a special role in a hierarchial scheme 
in which a daughter state was obtained at each step from a condensation of quasiparticles of 
the parent state into a correlated low-energy state [7,8]. Extensive calculations have proven 
these wavefunctions to be extremely close to the numerical exact solutions 151. 

In recent years, Jain [9] developed the compositefermion theory which could describe 
IQHE and FQHE by a common principle, attaching to each electron an even number of 
magnetic flux quanta which gives an easy explanation of the experimentally observed 
fractional fillings as well as a new derivation of Laughlin’s wavefunctions starting from the 
well understood r Q m .  New experiments are in good agreement with this theory [IC-121. 
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The incompressibility of these quantum fluids is explained by a finite energy gap above the 
ground state. Recently, for the IQHE (U = l), it was shown that incompressibility also results 
in an infinite symmetry which describes the area-preserving non-singular deformations of 
the quantum droplet and commutes with the Hamiltonian [13]. The quantization of this 
symmetry is well known in physics as the non-singular part of a Wltm and arises, e.g., in 
string theories or two-dimensional gravity [14-16]. These deformations are directly related 
to edge excitations which should live on the onedimensional boundaries and were studied 
by a number of authors [17-22]. The dynamics of these edge states is mainly based on the 
relation of Chern-Simons gauge theories and conformal-field theory [23]. 

In this paper, we give a generalization of this infinite symmetry to the FQHE (U = 
1 / (2p  + 1)) showing that the Laughlin wavefunctions are annihilated by the negative non- 
singular generators of the Wl+,. The very interesting point is that, when constructing 
the Wjtm for the FQHE, interelectron interaction effects enter which automatically cancel 
out for the IQHG and agree,with the result of 1131. Furthermore, we can show that these 
interactions can be interpreted as arising from an even number of magnetic-flux quanta 
which are attached to the electrons as in the composite-fermion picture. It turns out that the 
interaction is hidden in a non-trivial measure which is the N-point function of N localized 
flux-quanta vortices and should be described by an Abelian Chern-Simons theory. 

Viewing the Q I E  states as a droplet of an incompressible quantum fluid, the gapless 
edge excitations can be interpreted as coming from surface waves or area-preserving 
deformations of the droplet. We have calculated the wavefunctions for edge excitations 
with U = 1 / (2p  + 1) using the fact that they are generated by the positive modes of the 
W I + ~ .  Here our result agrees with former ones by Stone [24] for U = 1 and Wen [I81 for 
the FQHE. 

Finally, we apply the previous method to more general wavefunctions describing multi- 
layer systems or systems of interacting Landau levels for every fractional filling and show 
that the W I + ~  is indeed the fundamental symmetry of the edge excitations. 

The paper is organized as follows: first we give an introduction to the basics of the QHE. 
Next, we show how to generalize the construction of the Wltm from the IQHG to the FQWE 
and interpret this generalization by Jain’s composite-fermion theory. Then we calculate the 
wavefunctions of the edge excitations using the W I + ~ .  Finally, we consider the case of 
more general wavefunctions. 
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2. Preliminaries 

Let us start by reviewing some elementary facts about a two-dimensional electron in a 
uniform transverse magnetic field B .  The Schrodinger equation for such an electron is 
given by 

1 e 2  
H @ = - ( p - - A )  2m C @=.E@ 

where the momentum p = -WV and the gauge potential A exist in the plane. This problem 
can be solved exactly. Let us choose the symmetric gauge A = (B/Z)(-y, x )  and introduce 
complex variables: z = x + iy, Z = x - iy and a = +(az - iay), 8 = $(ax +ay) .  Defining 
all lengths in units of the magnetic length 
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and the energies in units of the Landau-level spacing 

eB 
w, = - 

mc 

the Hamiltonian can be reexpressed as 

(2.4) 

Letting fr = m = I = 1, the Hamiltonian and the angular momentum J can be written in 
terms of a pair of independent harmonic oscillators 

H = uta +oat (2.5) 

J = bib - uta (2.6) 

where these operators are 

and~satisfy the commutation relations 

[a, 0'1 = 1 [b, bt] = I 

with all other commutators vanishing. 
a&,o = b@,-,,o = 0 and given as 

The vacuum is determined by the condition 

1 
Po.0 = - exP(-41zI2). (2.10) J;;r 

In terms of the operators at and bt, the solutions can finally be written as 

(2.11) 

with energy E,, = ~ 2 n  + 1 which determines the Landau level. These energy states are 
infinitely degenerate due to the rotational invariance around the z-axis. It is useful to note 
that in the lowest Landau level the polynomial part of the wavefunction is holomorphic and 
in the second Landau level involves, at most, one power of 2. In general, the highest power 
of Z in the nth Landau level is n - 1. 

In a finite sample of area A ,  one can show that the degeneracy of each Landau level is 
determined by the number of the magnetic-flux quanta 

(2.12) 

where Omag = B A  is the magnetic flux through the area A and 4p0 = (h/e)  is a single flux 
quantum. 
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Let us now consider the case of N such electrons. If there is no interaction between them, 
the many-particle'problem splits into N copies of the single-particle problem. Therefore, 
we get N operators, identical to the single-particle operators a, b, but now labelled by an 
index i referring to the coordinate of the ith electron: ai, bi. Since the magnetic field B 
controls the number of states and thus the density of electrons per state, its action can be 
considered as an external pressure. Actually, the electron density per state is the correct 
quantum measure of the electron density, i.e. the filling fraction v 

(2.13) 

The IQHE is well understood by a gauge argument of Laughlin. Later, it was shown that 
the conductivity could be interpreted as the Chem character of a U(l)-fibre bundle over a 
toms [25-27] or as an element in the cyclic cohomology of a C* algebra [ZS] .  

For the FQm, with filling fraction U = 1 / ( 2 p  + I), Laughlin [4] found, by numerical 
experiments, the ground states given by the foIIowing wavefunctions: 

(2.14) 
i<j \ i / 

where p should be an integer to respect the Pauli principle. In the compositefermion 
theory, this wavefunction was reinterpreted by Jain as a wavefunction not of bare single 
elechons but of electrons bound to an even (here 2 p )  number of vortices or flux quanta. 
Starting with the wavefunction 4" of the IQHE with filling fraction U = n, one attaches 2 p  
flux quanta to each electron which is given by multiplying by D2p 

with (2.15) 

Using mean-field arguments, this leads to an electron state in which n-' d= 2 p  flux quanta 
are available to each electron. Thus, this composite-fermion state has a filling fraction [9] 

(2.16) 

Thus, the Laughlin wavefunctions are given for n = 1. When calculating some expectation 
values via path integrals only closed paths contribute to the partition function because it 
is the trace of exp(-pH). Closed paths are given by exchanging electrons or by moving 
them around each other. The phase associated with each path has two contributions. One 
is the statistical phase due to the Fermi statistics of the electrons and the other one is the 
Aharanov-Bohm phase due to the flux enclosed in the loop. However, adding an even 
number of flux quanta to a fermion again gives a fermion and, also, the Aharanov-Bohm 
phase factor is the same because a flux quantum produces a phase factor of unity. Thus, 
adding an even number of flux quanta to each electron does not change the expectation 
values. This argument was formulated by Lopez and Fradkin 1291. 

3. W,+, for Y = l /m 

The wavefunctions of the last section should describe the condensation of electrons to new 
states of matter, i.e. to incompressible quantum superfluids. Normally, the incompressibility 
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is explained by a finite energy gap above the ground state. Recently, Cappelli et a1 [ 131 have 
given another explanation of this incompressibility for the v = 1 case; they have found a 
WI+, symmetry which is the algebra of the area-preserving non-singular diffeomorphisms 
commuting with the Hamiltonian of the system, defining an incompressible state now to be 
a highest-weight vector of the WI,, [13]. They constructed the generators of the WI+, 
in the following way: 

(3.1) 

These generators commute with the Hamiltonian of the system and fulfil the following 
commutation relations: 

Then they have shown that 

L,,,"$ro = O  for n > m 2 - I  (3.3) 

which means that $ro is a highest-weight vector of the algebra of area-preserving non-singular 
diffeomorphisms. 

The aim of our paper is to generalize this result to the FQHE. We attempt this by changing 
the definition of the bi, introducing an interaction term in the following way: (b! remains 
unchanged) 

. 
2 '  I bi = ai + 2 - 2 p C -  
2 i 2 j  zi - z j  

(3.4) 

For p = 0, one recovers the original definition for the bi and b/ as before, so we are not 
changing out notation. The commutators of the bi and b/ change in the following way 

[bi, b,'] = -2pnJ(zi - z j )  for i # j . (3.6) 

Defining the L,,," as above but with the new b,, these new Lmn fulfil the commutation 
relations of the same WI+, up to terms involving delta functions. In the case of fermions, 
which have to respect the Pauli principle, the delta functions do not contribute since the 
wavefunction has to approach zero for z i  --t z j ,  i # j. For the first Landau level, where 
the wavefunctions are holomorphic up to the exponential term, one can rewrite the operators 
bi and b! such that they act only on the holomorphic part: 

1 
bi = ai - 2p  - 

i # j  zi - zj 
(3.7) 

bf = zi. (3.8) 
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Note that bf acts just by multiplication. Thus, in the case of the first Landau level, no delta 
functions will occur. In the standard notation of W,+,, we set 

M Flohr and R Varnhagen 

- L - 2 . r - 2  s 3 1 n > - s + I  (3.9) w.'"' 
where Wf) is the nth-Fourier mode of a spin s field. After some calculations, which 
can be found in the appendix, one obtains the action of the modes W,? on the Laughlin 
wavefunction 11, 

I 1 1 . . .  
zjc, z j ,  " '  zj..a Zj.., I 1  

from which it immediately follows that, acting on (rP, the negative modes vanish 

W,'"'+,,=o for - s < n < - l ,  (3.1 1) 

Moreover, the states $,, are eigenstates for the zero modes 

(3.12) 

Let us emphasize this result. We have shown that the Laughlin wavefunctions are highest- 
weight states of the quantized algebra of non-singular area-preserving diffeomorphisms 
which means that these states describe incompressible quantum fluids and that all surface 
waves on the droplet move in the same direction. The singular deformations cannot be 
included in the algebra in this way since they would change the topology of the droplet. 
Now, we have a common formulation for v = 1 and v = 1/(2p + 1) QHE, where the 
IQHE is automatically described by a single-electron theory but the FQHE needs interelectron 
interaction in the first Landau level. 

At this point the reader may worry that bi and b! are not Hermitian conjugate. However, 
we can take an inner product of the form 

($1 I $2) = 1 *!@2 (3.13) 

where p is given as 

LL(ZI.  il.. . . , ZN1 iN) = n i Z i  - zj1-4p. (3.14) 
icj 

t Using this inner product, bi and bi become Hermitian conjugate to each other. One will 
see that this measure is very important in the following, especially for the interpretation of 
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the new interaction term in the bis. Namely, by introducing the non-trivial measure, the 
Hamiltonian would be non-Hermitian. Thus we have to change the definition of the a! in 
the following way: (ai also remains unchanged) 

The commutation relations are now given as 

The Hamiltonian is defined as before 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

and commutes with the W1+, without occurrence of any delta functions. The Landau- 
level structure is not destroyed and the Laughlin wavefunction for U = l j (2p + 1) is an 
eigenfunction in the lowest Landau level. 

The configuration space for distinguishable particles is given by 

CN = {(zi. . . . , zN) E CN: zi # zj for i # j ) .  (3.19) 

The (ai, a,!) can be considered as covariant derivatives on a U(1) 0.. . 0 U(1) bundle over 
CN as in the paper by Verlinde on the non-Abelian Aharanov-Bohm effect [30]. Thus, the 
curvature is given by (3.14) which describes a constant magnetic field plus 2p flux quanta 
added to each electron. This is exactly the FQm interpretation by Jain in the composite- 
fermion theory mentioned in the previous section. These flux quanta can be described 
in an Abelian ChemSmons theory by localized Wilson loops. Considering the N-point 
function of these flux quanta localized at the positions zi of the electrons, one sees that it 
is proportional to the measure p (3.14) remembering that these Wilson loop operators can 
be expressed by vertex operators 1311. This explains the former observation on the relation 
between vertex-operator correlators and the Laughlin wavefunction [24,32-341. 

This picture is in good agreement with the argument of Lopez and Fradkin [29], stated 
previously, that adding an even number of flux quanta to each electron leaves all expectation 
values invariant. Calculating the expectation values of the Laughlin wavefunction, one also 
has to introduce the measure p (3.14) 

(3.20) 

It is easy to see that this expression is independent of p. thus, adding flux quanta does not 
change the expectation value. 

Thus, in our formulation of the FQHE, we consider a Hamiltonian without explicit 
interelectron interaction, as in the IQHE, but describing the interaction with the help of 
a non-trivial measure coming from the N-point correlation function of the flux quanta in an 
Abelian ChernSimons theory. 
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At this point, the reader may think that our picture of the FQHe is only a complicated 
view of the IQHE In fact, Lopez and Fradkin [ZS] have explicitly shown that adding 2 p  
flux quanta changes the effective magnetic field and thus, not all observables are unchanged 
by our transformation of bi, bt, ai and a/. The change of the effective magnetic field is 
not the only physical effect of this transformation. Verlinde [30] has already shown that a 
Hamiltonian similar to ours without a magnetic field acquires a non-trivial S-matrix when 
a substitution of the kind 

is applied. Therefore, our transformation is not only a mathematical reformulation of the 
IQHE; it also describes new physical effects. 

4. Edge excitations 

Halperin [17] was the first to point out that the rQHE states contain gapless edge excitations 
which are responsible for non-trivial transport properties. Using gauge arguments, one can 
easily show that FQHB states also support gapless edge excitations. Wen [18] has shown 
that these states span a representation of a Kac-Moody current algebra and Stone [24] 
has described them using Schur functions or homogenous symmetric polynomials. In this 
section we derive these results with the help of the W I + ~ .  

Viewing the QHE states as a droplet of an incompressible quantum fluid, we consider 
the edge excitations as area-preserving deformations of the droplet which are described by 
the W I + ~ .  Thus, the highest-weight representation on the QHE wavefunction should give 
the spectrum of these edge states 

WZ) w2). . . w2)*,, s; > si+l; ni > n;+l if si = s;+l. (4.1) 

In fact, equation (3.10) shows that applying one mode of a W I + ~  generator to +,, yields +,, multiplied by a symmetric function since the fraction of the determinants is equal to the 
Schur function Sfo.o.--o.nl. In fact, every Schur function can be written as a fraction of a 
certain determinant and the Vandermonde determinant. If we use the notation 

z? I ml ... 21 

then the Schur functions can be expressed as 12.41 

(4.3) 

By induction, it follows that monomials, as in (4.1), also yield polynomial symmetric 
functions multiplied by +,,. The reason is that any such state must be totally antisymmetric 
due to the Pauli principle. But since 11, is always reproduced, the only way to get a 
totally antisymmetric polynomial function is to multiply l/rP by a totally symmetric one. 
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Moreover, the current j = W(') already yields a complete set of symmetric functions, 
namely the products of power sums sx = xi=, zf N 

L, jn, . . . ink qp = s,, snl . . . snk ?bP. (4.4) 

This is the basis of all symmetric functions provided ni > ni+l. To see this, one has to 
note that the action of 

(4.5) 

on f (z], . . . , ZN) exp(-i C;"=] Izil'). where f (z,, . . . , ZN) is any holomorphic function on 
CN, is just given by the multiplication with sk which is a holomorphic function fork > 0. 

Thus, the W I + ~  algebra yields all possible edge excitations which respect the Pauli 
principle. The resulting spectrum is given by the set of all symmetric polynomial functions 
with the partition function being nothing but 

(4.6) 

where p(n) denotes the number of partitions of n in positive integers. Thus, the positive 
modes of the current j = W(]) alone generate all edge excitations which means that these 
excitations can be interpreted as surface waves moving in the same direction and moving 
with the same velocity. Therefore, the spectrum is equivalent to that of the U(1)-Kac- 
Moody algebra at level one. In this way, the results of Wen [18] and Stone [24] reappear 
in a unified way. 

These considerations show that the conformal-field theory, which corresponds to the 
ChemSimons theory describing the attachment of flux quanta to the electrons and which 
is defined on the boundary of the system (the Laughlii droplet), must be generated by a 
U(1)-Kac-Moody current. Thus, it follows that the conformal theory must have an effective 
central charge cev = 1. This agrees with the fact that the non-trivial measure introduced 
in the thiid section, where it arose from the non-flat Kniihnik-Zamolodchikov connection 
describing the effect of the attached flux quanta, is given by a correlation function of a 
cer = 1 conformal-field theory. 

5. Generalizations 

There exist many other examples of trial wavefunctions, not only for filling fraction 
U = 1/(2p + 1). Most of these wavefunctions have the following structure [18,24,35,36]: 

where K is a symmetric integer-valued m x m  matrix with odd integers on the main diagonal. 
Then, the filling fraction is given by 
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Thus, one can get different wavefunctions for the same filling fraction v. The physical 
picture behind this ansatz is to couple different independent Hall fluids (i.e. sets of 
eventually interacting Landau levels or different layers). Viewing the filling fraction v 
as being proportional to the Hall conductivity U, one sees that the total Hall conductivity is 
determined by the Hall conductivities of the several Hall fluids (or Landau levels) according 
to the Kirchhoff rules for coupling them in parallel or in series. bye Now, it is easy to see 
that the WI+, can be constructed in the same way as before defining bf and b:+ as 

M Flohr and R Vamhagen 

(5.3) 

and 

1.i 

The heighest weight condition can be fulfilled, if 

K = I I - A  (5.6) 

where II is the m x m identity matrix. For example, the U = m/(2pm + 1) FQHE can be 
obtained if K is given by the following m x m matrix [21,35] 

2 p + 1  2 p  ... 
K = (  2p : 2 p + 1  

2P ... 2p 2p+1 

(5.7) 

Thus, the matrix A is nothing but 

which indeed can be considered as the addition of 2 p  magnetic-flux quanta to each particle 
as stated previously. 

The edge excitations are generated by the action of the W1+- in a completely analogous 
manner. But now, if m > 1, the current j W(') contained in the WI+= is no longer 
sufficient to generate all the edge excitations. The partition function (4.6) has to be repIaced 
by its mth power, i.e. the edge excitations are generated by m currents [181. In the same 
way it is possible to reproduce the hierarchy picture of Haldane and Halperin 121,351. 

6. Conclusion 

In this paper we have shown that the WI+- is the underlying symmetry in the IQH6 as well 
as in the FQHE which generates all edge excitations. This W,+- was first introduced in the 
case U = 1 1QHe by Cappelli er al [13], describing the incompressibility of the quantum 
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droplet. We have shown that the Laughlin wavefunctions for U = I / ( 2 p  + 1) can be 
interpreted as highest-weight vectors of a W,+- which describes the quantized algebra of the 
area-preserving diffeomorphisms. For this generalization, we have introduced an electron- 
electron interaction term which can be considered as adding flux quanta to each electron as 
in Jain's composite-fermion theory. Further, we calculated all the edge excitations of this 
quantum droplet, interpreting them as area-preserving surface deformations, and we could 
show that these are surface waves which are moving with the same velocity and in the same 
direction. 

There exist many other examples of trial wavefunctions, not only for filling fraction 
U = 1/(2p + 1). We have applied our methods to wavefunctions for multi-layer systems 
and systems of interacting Landau levels. 

An open question still is how the Coulomb interaction breaks this symmetry. 
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Appendix 

In this appendix, we sketch a derivation of equation (3.10). First, one shows inductively 
that 

(-4.1) 

Thus, the action of Wf) on ll.p is given by 

Note that this expression does not explicitly depend on p. Now, we can rewrite the sums 
in terms of determinants in thefollowing way: 
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where we sum over all fixed-point free permutations of and where the sign comes from 
the asymmetry ofthe factors (zi - zj). The last expression is nothing but the expansion of 
a determinant divided by a Vandermonde determinant; hence, we arrive at equation (3.10). 
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